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Abstract

This paper, the second in a three-part series, deals with the three-dimensional (3-D) nonlinear dynamics of a vertical

cantilevered pipe conveying fluid, additionally constrained by arrays of four or two springs or a single spring at a point

along its length. Theoretical calculations are presented for the same pipe but different spring configurations, points of

attachment and stiffnesses, the main generic difference being this: in some cases, the system loses stability by planar

flutter, and thereafter performs two-dimensional (2-D) or 3-D periodic, quasiperiodic and chaotic oscillations; in other

cases, the system loses stability by divergence, followed at higher flows by oscillations in the plane of divergence or

perpendicular to it, again periodic, quasiperiodic or chaotic. Experiments were conducted for some of the systems

studied theoretically, and agreement is found to be generally good, although some open questions remain.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of a cantilevered pipe with added supports (somewhere along the length, between the fixed and the free

end) or added springs has been studied extensively in the past, for it results in much more complex and interesting

dynamics, as reviewed in Paı̈doussis (1998, Sections 3.6 and 5.8) both in the linear and nonlinear domains. All these

studies were motivated by the following. On the one hand, a pipe with supported ends is an inherently conservative

system (i.e., conservative in the absence of dissipation) and loses stability by divergence via a pitchfork bifurcation; on

the other hand, a cantilevered pipe is an inherently nonconservative system, and it loses stability by flutter via a Hopf

bifurcation. The question is: what is the dynamical behaviour if an ‘‘intermediate’’ support is provided to a cantilevered

pipe, i.e., a support not at the free end? Does the system behave like one with supported ends, or basically as a

cantilever?

Some linear studies with a simple support between the fixed (at x ¼ 0) and free (x ¼ L) ends were first undertaken by

Chen and Jendrzejczyk (1985), Edelstein and Chen (1985) and Jendrzejczyk and Chen (1985), showing that, if the

support is sufficiently upstream, the pipe behaves as a cantilever, whereas if sufficiently downstream, it behaves as a
e front matter r 2006 Elsevier Ltd. All rights reserved.
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system with supported ends, losing stability by flutter and divergence, respectively. Experiments were also conducted,

and the agreement achieved with the linear theory is excellent.

Linear work involving a flexible support (a spring), again somewhere between x ¼ 0 and L, was also undertaken,

notably by Chen (1971a,b) and Sugiyama et al. (1985); the latter also conducted experiments—again achieving quite

good agreement with the linear theory. For a fixed position of the spring, say at x ¼ 1
2
L, for a sufficiently weak spring

constant, the system behaved as a cantilever, losing stability by flutter; a sufficiently stiff spring, however, made the

system lose stability by divergence, as if it were a pipe with supported extremities.

Additional work involving, for example, several spring supports, or a rotational spring in addition to or instead of the

translational spring support, are also reviewed in Paı̈doussis (1998, Section 3.6).

All of the foregoing involved planar (2-D) motions and, in the theoretical work, linear modelling.

Fundamentally, to get a ‘‘feel’’ of the basic dynamics, one can conduct a simple experiment involving a hanging

cantilevered pipe conveying fluid—say, air or water. At a flow velocity slightly below what would initiate flutter, merely

touching the edge of the pipe with a finger, near the free end, will cause the pipe to buckle. If the finger touches the pipe

closer to the clamped end, the pipe does not buckle, but it will eventually begin to flutter as the flow velocity is increased

further. Similarly, when an array of intermediate springs is connected to a cantilevered pipe conveying fluid, depending

on the individual stiffness k of the springs and the position Ls along the pipe, the pipe will lose stability by either

divergence or flutter: the simply supported case corresponds to a spring of infinite stiffness at Ls ¼ L, while k ¼ 0 is

equivalent to a free end. However, as the flow velocity is increased further, the pipe may then develop other instabilities

as well; e.g., flutter, if initial loss of stability was by divergence. As the flow rate is increased even further, the pipe may

experience three-dimensional (3-D) motion, which does not occur for a plain (i.e., with no intermediate spring supports)

cantilevered or simply supported pipe, as will be discussed later in this paper. Thus, it is obvious that 3-D nonlinear

theory is required, if the behaviour past the first instability is to be predicted reliably.

Nonlinear theory is also necessary in studying the dynamics in the neighbourhood of double degeneracy, i.e., for the

case where the intermediate support is such that the two bifurcations (pitchfork and Hopf) occur simultaneously at a

critical flow velocity. It is known that in the neighbourhood of double degeneracy, interesting dynamical behaviour may
Fig. 1. (a) Schematic representation of side view of the system, (b) the four-spring configuration, located along the pipe at x ¼ Ls, (c)

the special case of the four-spring array in (b) with y ¼ 0, (d) the pre-stressed two-spring arrangement.
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arise, including the possibility of chaos, basically because the system ‘‘cannot decide’’ whether it should diverge

statically or flutter, or do both at once; i.e., the system might ‘‘hunt’’ aperiodically between two attractors.

One such theoretical study was undertaken by Paı̈doussis and Semler (1993), involving a linear spring (geometrically

linear also, by presuming the spring to be attached to a sliding support). In this work, motions were considered to be

two-dimensional (2-D), i.e., planar. Some interesting analytical work was conducted, involving normal forms and

centre manifold theory, and heteroclinic orbits were found to arise for some sets of system parameters. It is known that

if such orbits are perturbed, heteroclinic tangles and chaos may be generated (Guckenheimer and Holmes, 1983; Moon,

1992). Indeed, chaos was found to occur if the system was given periodic perturbation in the flow velocity.

The more general case of 3-D motions of a pipe with intermediate spring supports was tackled by Steindl and Troger

(1996), who considered in depth the regions of existence and stability of heteroclinic cycles, again in the neighbourhood

of double degeneracy, involving pitchfork and Hopf bifurcations of the system. Also, Steindl (1996) considered another

type of heteroclinic cycle, associated with Hopf–Hopf bifurcations.

Apart from earlier linear work, there is paucity of experimental investigations into such systems in the nonlinear

realm, which would permit the study of the dynamics beyond the first loss of stability. One such study was made by

Saaid (1999) who investigated the problem both theoretically and experimentally. The experiments will be discussed in

this paper. The theory used by Saaid was an earlier, 2-D version of that of Part 1 (Wadham-Gagnon et al., 2007) of this

study, in which the induced tension due to vertical lifting of the point of attachment of the springs on the pipe

(significant at large pipe deflections) is not taken into account. Hence, Saaid’s experiments are compared in this paper

with the improved theory in which the vertical lifting of the pipe is accounted for.

The system under consideration is shown schematically in Fig. 1(a). Fig. 1(b)–(d), shows the different spring

arrangements (all at x ¼ Ls) investigated, both theoretically and experimentally, as will be discussed in what follows.
2. Theoretical dynamics

Using the inextensibility conditions, the 3-D dynamics is described by two nonlinear coupled partial differential

equations, as derived in Part 1 (Wadham-Gagnon et al., 2007). These equations are then transformed into a set of eight

nonlinear second-order ordinary differential equations using a Galerkin approach with four beam-mode comparison

functions in each orthogonal direction, y and z (or Z ¼ y/L and z ¼ z/L in dimensionless form). A finite difference

scheme is then applied to the Galerkin-type solution, yielding the displacements Z(x, t) and z (x,t), where x ¼ x/L and t
is dimensionless time.

In this section, a theoretical study is presented through a series of simulations for the system with parameters given in

Table 1, which corresponds to the pipe used in the experimental study discussed in Sections 3 and 4. The dimensionless

parameters, as defined in Eq. (42) of Part 1, become b ¼M/(M+m) ¼ 0.145 and g ¼ (M+m)gL3/EI ¼ 25.4, where the

symbols are defined in Table 1.

The physical parameters that can easily be varied are: (i) the flow velocity, U, and its dimensionless counterpart, u, (ii)

the individual spring stiffness, k, (iii) the initial stretch in each spring with respect to the centreline of the pipe at rest,

(Ro–Lo), (iv) the absolute angle of an individual spring with respect to the z-axis, y, (v) the point of attachment of the

array of springs along the pipe, Ls, (vi) the number of springs in the array, either 2 or 4 corresponding to the

configurations of Figs. 3 and 4 of Part 1 and Fig. 1 here.

In order to describe a wide spectrum of results, five qualitatively different cases are explored numerically in this work,

as defined in Table 2. It was originally supposed that the most interesting dynamics would arise in the close vicinity of

the pitchfork/Hopf bifurcation double degeneracy. This would occur if the location and stiffness of the springs were

such that the pitchfork bifurcation (leading to static divergence) and the Hopf bifurcation (leading to flutter) occurred

simultaneously, at the same flow velocity, as predicted by linear theory. Experiments showed that the situation of the
Table 1

Pipe parameters used in the calculations

Length, L 0.443m

Inner/outer diameter, Di/Do 6.4/15.7mm

Flexural rigidity, EI 7.42� 10�3Nm2

Density of the pipe, rp 1167 kg/m3

Density of the fluid, rf 999 kg/m3

Mass per unit length of pipe, m 0.189 kg/m

Mass per unit length of fluid, M 0.0320 kg/m
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Table 2

Spring parameters for the different theoretical cases studied

Case 1 Case 2 Case 3 Case 4 Case 5

Springs 4 4 4 2 2

Ls 0.6L 0.75L 0.75L 0.75L 0.75L

y 12.801 27.111 01 101 01

k (N/m) 17.63 17.63 17.63 22 20

Ro (m) 0.1062 0.0727 0.0727 0.0727 0.0727

Lo (m) 0.0635 0.0635 0.0635 0.0635 0.0635
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system ‘‘hunting’’ between these two different behavioural patterns never arises. Nevertheless, the most interesting

dynamics was observed in the wider neighbourhood of this double degeneracy. It was on these spring locations that the

experimental programme focussed, and hence also the theoretical calculations.

Theoretical calculations for each of the five cases in Table 2 will now be presented in the following subsections.

2.1. Initial instability via Hopf bifurcation (dynamic instability)—Case 1 in Table 2

The first spring configuration studied is chosen such that the system first loses stability via a Hopf bifurcation (i.e.,

similarly to the plain cantilevered pipe). The four-spring array is fixed at Ls ¼ 0.6L and the angle at equilibrium of each

spring with respect to the z-axis (z-axis) is y ¼ 12.801. The overall dynamics of the system is summarized in the

bifurcation diagram of Fig. 2, where the orthogonal displacements, Z and z, at the tip of the pipe are plotted when their

respective velocities, _Z and _z change sign, i.e., reach a local minimum/maximum, as a function of flow rate. As expected,

the system is stable for small flow velocities; it then loses stability at dimensionless flow velocity ucr ¼ 8.8, where planar

flutter starts to occur in the xy-plane. An inspection of the linear coefficients of the spring forces acting on the system

[Eqs. (28) and (29) of Part 1] shows that these periodic oscillations occur in the plane of least resistance, i.e., in the xy-

plane here. For the system concerned, typical planar flutter, very similar to that occurring for a plain cantilevered pipe,

for a flow velocity of u ¼ 10.0 is shown in the time trace of Fig. 3(a), the phase plane diagram of Fig. 3(b) and the pipe

shape over a cycle of oscillation of frequency f ¼ 7.01 in Fig. 3(c). Although comparable to the flutter of a plain pipe,

the instability here occurs at a much higher flow rate with a much higher frequency [Paı̈doussis and Semler (1993) found

ucrE5.5 and fE2.5 for a similar plain pipe].

A pitchfork, or symmetry breaking bifurcation, occurs at u ¼ 12.2: the pipe oscillates asymmetrically, giving

preference to one side of the original equilibrium configuration, as determined by the initial conditions (only one such

solution is shown in the bifurcation diagram of Fig. 2 for simplicity). Symmetry is regained afterwards at u ¼ 13.4, and

retained until u ¼ 14.8. There is no unusual change in frequency before, throughout and after the symmetry break,

apart from the continuous increase in frequency due to the increasing flow rate. At a flow velocity of u ¼ 15,

quasiperiodic oscillations take place, followed almost immediately by a new qualitative solution: periodic oscillations

having a much larger frequency and smaller amplitudes (at u ¼ 15.2).

Up to this point, all the dynamics occur in one plane and it is very similar to what was described by Paı̈doussis and

Semler (1993), except for the jump in frequency at u ¼ 15.2. No such jump was reported by Paı̈doussis and Semler

(1993); but, in that study, only two Galerkin modes were used for discretizing the system.2

As shown in Figs. 2 and 4, the first sign of 3-D motion ensues at a flow rate of u ¼ 15.4 (note the appearance of

crosses in the bifurcation diagram). It is characterized by quasiperiodic deviations from the initial plane of oscillation. A

fast Fourier transform applied to the time trace of Fig. 4(a) shows a dominant frequency of f ¼ 12.1, but it takes

approximately three of these partial cycles for the pipe to complete a quasiperiodic cycle, such as shown in Fig. 4(b).

The projection onto the zx-plane of the pipe shape in Fig. 4(e) over a partial cycle shows that the response in that plane

is not symmetrical, while it is so in the xy-plane [Fig. 4(d)]. Note how the pipe shape is clearly influenced by the position

of the springs, Ls ¼ 0.6L, this node being nearly stationary. Fig. 4(d), when compared to Fig. 3(c), shows the radical

change in pipe shape over a cycle of oscillation due to the bifurcation associated with 3-D motion and a jump in

frequency.
1The frequencies quoted are in dimensionless Hz, rather than dimensionless rad/s.
2It may be of interest that a similar frequency jump has been reported for the system with an end-mass (Paı̈doussis and Semler,

1998).
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Fig. 3. Case 1 at u ¼ 10.0: (a) time trace of tip displacement ( – –, Z; —, z). (b) Phase plane diagram of tip displacement (z ¼ 0) for

29ptp30. (c) Pipe shape in the xy-plane over a period of frequency f ¼ 7.0 starting at time t ¼ 29.

Fig. 2. Bifurcation diagram for Case 1: four-spring array, Ls ¼ 0.6L, y ¼ 12.801, k ¼ 17.63N/m, Ro ¼ 0.1062m (Ro–Lo) ¼ 0.0427m.

Note that circles (o) denote dimensionless displacements Z in the xy-plane (see Fig. 1), while crosses (+) refer to displacements z in the

zx-plane.
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A few quasiperiodic cycles later, the mirror image of Figs. 4(b) and (d) is obtained, which clarifies the symmetry of the

surface covered by the projection of the tip displacement on to the yz-plane over a longer period of time provided in

Fig. 4(c). The overall symmetry over time indicates that the dynamics is not a result of a pitchfork bifurcation, while the
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Fig. 4. Case 1 at u ¼ 15.4: (a) time trace of tip displacement ( – –, Z; —, z). (b,c) Tip displacement projected onto the yz-plane, in (b)

over a cycle of dimensionless frequency f ¼ 4.7, and in (c) over several cycles. (d,e) Pipe shape over a period of frequency f ¼ 12.1

starting at time t ¼ 22, projected onto, (d) the xy-plane, and (e) the zx-plane (note the difference in the scale of the abscissa).

M.P. Paı̈doussis et al. / Journal of Fluids and Structures 23 (2007) 569–587574
seemingly asymmetrical behaviour is purely a 3-D quasiperiodic effect of the system. It should be noted that although 3-

D, the motion in the zx-plane remains small vis-à-vis that in the xy-plane.

As the flow rate is increased further, chaotic oscillations take place between u ¼ 15.8 and 16.4. The system briefly

returns to quasiperiodic behaviour between u ¼ 16.6 and 16.8 and even periodic behaviour between u ¼ 17.0 and 17.2.

The time trace of the tip displacement given in Fig. 5(a) and the projection of the tip displacement in the yz-plane of
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Fig. 5. Case 1 at u ¼ 17.2: (a) time trace of tip displacement ( – –, Z; —, z). (b,c) Tip displacement projected onto the yz-plane for (b)

t ¼ 15–20 and (c) t ¼ 24.5–25.

M.P. Paı̈doussis et al. / Journal of Fluids and Structures 23 (2007) 569–587 575
Fig. 5(b), for u ¼ 17.2, shows that the pipe undergoes transient chaotic oscillations for the first 16 dimensionless time

units before ‘‘stabilizing’’. Even so, it is not until tE20.0 that the periodic limit cycle is fully established. This simply

points out how the system ‘‘may take time’’ to settle down into a quasiperiodic or even periodic state. A transition phase

before reaching the state of steady oscillation happens in all simulations (if there exists a steady solution); it is only a

matter of how long it takes before it is reached. For a plain pipe near the point of Hopf bifurcation, due to the small

effective damping of the system, steady state is reached after a long period of time and with decaying or climbing

amplitude, depending on initial conditions. Here, the steady state is not even perceptible until it suddenly falls into place

around tE16. It is noted that the plane of symmetry has been interchanged with respect to the results in Fig. 4.

The dynamics of this system at higher flow velocities (u417.2) is assumed to be chaotic (for simulations tested up to

tE100).
2.2. Initial instability via pitchfork bifurcation (static instability)—Case 2 in Table 2

In this second case, the array of four springs is positioned closer to the free-end (at Ls ¼ 0.75L) and the total stiffness

of the springs is large enough for the pipe to initially lose stability via a pitchfork bifurcation. Here, the spring angle

with respect to the z-axis is y ¼ 27.111 and the initial stretch in each spring is (Ro–Lo) ¼ 0.0092m. As seen in the

bifurcation diagram of Fig. 6, divergence occurs at a flow rate of u ¼ 7.3. Referring again to the spring forces acting on

the pipe, given in Eqs. (28) and (29) of Part 1, the buckling here occurs in the plane of most resistance, i.e., the zx-plane

which is opposite to the case where stability is lost by a Hopf bifurcation described in Section 2.1, which seems sound

from a theoretical point of view. This will be discussed in-depth in Section 4, following the experimental results.

The ‘‘asymmetrical’’ shape of the buckled pipe, represented by a nonzero fixed point in the bifurcation theory

nomenclature, has a symmetrical counterpart which can be obtained by using opposite-sign initial conditions, not

shown, again for clarity. As can be seen in Fig. 6 for 7.3ouo8.3, the amplitude of divergence increases with the flow

rate.

At u ¼ 8.3, the nonzero static and planar solution becomes unstable through a Hopf bifurcation. This not only

results in oscillations around the unstable fixed point, but also in periodic and symmetric oscillations in the

perpendicular plane. This 3-D periodic behaviour soon becomes quasiperiodic at u ¼ 8.6. An example of quasiperiodic

oscillations is given in Fig. 7 for a flow rate of u ¼ 10.0. The time trace of the tip of the pipe in Fig. 7(a) shows a
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Fig. 6. Bifurcation diagram for Case 2; four-spring array, Ls ¼ 0.75L, y ¼ 27.111, k ¼ 17.63N/m, Ro ¼ 0.0727m (Ro–Lo) ¼ 0.0092m.
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dominant frequency, f ¼ 9.0, but also a recurring cycle with a period of tE3.75. Although Fig. 7(b) shows no sign of

symmetry over a short time interval of frequency f ¼ 9.0, Fig. 7(c) suggests there is an overall symmetry over a longer

time interval. It is seen in Figs. 7(d) and (e) that in the xy-plane the system performs small oscillations superposed on the

state of divergence. Moreover, the system undergoes a ‘‘dynamic’’ divergence behaviour, in that the side to which the

buckling occurs switches aperiodically, as illustrated for t ¼ 12 and 14 in Figs. 7(d) and (e).

A return to periodicity beginning at u ¼ 10.4 follows, where the tip displacement traces an oval shape in the yz-plane,

as shown in Fig. 8(a) for a flow velocity of u ¼ 10.6. This figure also suggests that the system has found another plane of

symmetry, other than the xy- or zx-plane. At a flow rate of u ¼ 10.9, the trace of the tip displacement becomes a figure-

of-eight as shown in Fig. 8(b) for u ¼ 11.0, and the transition from the oval shape to the figure-of-eight shape periodic

oscillations seems to occur with no sign of a transitional quasiperiodic or chaotic phase. The figure-of-eight phase is

once again characterised by a dynamic behaviour about a point of divergence in the zx-plane while oscillating

symmetrically in the xy-plane.

There is a short transition from periodic to quasiperiodic motion between u ¼ 11.7 and 11.9; the system then becomes

chaotic, as shown in Fig. 9 for a flow rate of u ¼ 12.5, before the numerical solution ‘‘crashes’’ due to matrix

singularities.
2.3. Special case of the four-spring array: y ¼ 01—Case 3 in Table 2

Using the same parameters as in Case 2 while changing only the absolute spring angle with respect to the z-axis to

y ¼ 01 leads to an equivalent system with only two springs on either side of the pipe, along the z-axis—see Fig. 1(c).

The bifurcation diagram in Fig. 10 shows that the system loses stability via a pitchfork bifurcation at a flow rate of

u ¼ 7.2, in the plane of the springs (the zx-plane). The solution remains static until u ¼ 8.3, where it becomes dynamic

through a Hopf bifurcation, with oscillations emerging about the now unstable point of divergence. The response is still

in the plane of initial buckling and is referred to as ‘‘in-plane flutter’’. Eventually, at u ¼ 8.8, the pipe loses stability in

the perpendicular plane (xy-plane) as well, leading to 3-D quasiperiodic (figure-of-eight shape) oscillations.

As the flow rate is increased, an interesting quasiperiodic solution occurs, shown in Fig. 11 for u ¼ 9.0. The system

leaves the impression of cyclically fluctuating from ‘‘in-plane flutter’’ to ‘‘figure-of-eight’’ oscillations. Indeed, as seen in

the time trace of Fig. 11(a) the oscillations in the xy-plane undergo large variations in amplitude. The system is

nonetheless globally stable and completes a full, quasiperiodic, cycle in tE5, typically projecting the tip displacement

over one cycle into the yz-plane, as shown in Fig. 11(b). A fast Fourier transform reveals that the oscillations in the
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Fig. 7. Case 2, quasiperiodic oscillations at u ¼ 10.0: (a) time trace of tip displacement ( – –, Z; —, z). (b,c) Tip displacement projected

onto the yz-plane; (b) over a quasi-cycle of oscillation of frequency f ¼ 9.0, and (c) for t ¼ 12–17. (d,e) Pipe shape over quasi-period of

oscillation of frequency f ¼ 9.0 projected onto the xy-plane starting at time (d) t ¼ 12 and (e) t ¼ 14.
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zx-plane have a frequency of fE9.1 while the oscillations in the xy-plane have a frequency of fE4.4, which is roughly

half of that in the zx-plane. In the case of a periodic ‘‘figure-of-eight shape’’ oscillation (e.g., Fig. 8(b)), it is expected

that the frequency in one plane is double that in the other plane. Over several cycles, as seen in Fig. 11(c) for t ¼ 0–100,

a clear contour of the projected surface covered by the tip displacement is defined, curiously resembling the shape of a

butterfly!
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Fig. 8. Periodic tip displacement projections into the yz-plane of Case 2 at flow rates (a) u ¼ 10.6 and (b) u ¼ 11.0.

Fig. 9. Case 2 chaotic oscillations at u ¼ 12.5: (a) time trace of tip displacement ( � �, Z ; —, z). (b,c) Tip displacement projected onto

the yz-plane over (b) a short time period and (c) a longer period.

M.P. Paı̈doussis et al. / Journal of Fluids and Structures 23 (2007) 569–587578
2.4. Two-spring array, general behaviour—Cases 4 and 5 in Table 2

The two-spring array defined in Appendix B of Part 1 is of special interest when R0 6¼L0, since it introduces an initial

constant force on the pipe in the z-direction, as seen in Eq. (B.4) of Part 1. The reader is referred to Fig. 4 of Part 1 and

Fig. 1(d) here for a schematic representation. Due to the position of the springs, the ‘‘unbalanced’’ force deforms the

pipe initially in an almost pure first-mode shape before flow is introduced into the system. This will be referred to as the

initial state of the pipe. Two configurations are analysed with the two-spring array: Cases 4 and 5 of Table 2.

For Case 4, it is seen in the bifurcation diagram of Fig. 12(a) that the initial deformation of the pipe is eventually

amplified as the flow rate increases, the effects beginning to be noticeable around u E 6.8. The nonzero static solution
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Fig. 10. Bifurcation diagram for Case 3; with the four-spring array, y ¼ 01 and k ¼ 17.63N/m (or with the two-spring array, y ¼ 901

and k ¼ 35.26N/m), Ls ¼ 0.75L, Ro ¼ 0.0727m (Ro–Lo) ¼ 0.0092m.

Fig. 11. Case 3, quasiperiodic oscillations at u ¼ 9.0: (a) time trace of tip displacement ( – –, Z; —, z). (b,c) Tip displacement projected

onto the yz-plane, (b) over a quasi-cycle of transition from in-plane to out-of-plane oscillations of quasi-period TE5, and (c) the

butterfly: tip displacement over several cycles.

M.P. Paı̈doussis et al. / Journal of Fluids and Structures 23 (2007) 569–587 579
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becomes unstable through a Hopf bifurcation at u ¼ 8.5, with in-plane (zx-plane) oscillations developing about the

amplified initial state. Then, at u ¼ 9.9, 3-D periodic oscillations develop. The motion in the plane perpendicular to the

initial state immediately takes an asymmetric form observable through the tip displacement which seems to favour one

side of the y-axis or the other, depending on initial conditions, as shown in Fig. 12(b) for a flow velocity u ¼ 10.0.

Case 5 is a special case of the two-spring array configuration where the two springs are reduced to a single spring

initially along the z-axis, obtained by setting y ¼ 01. Again, a pre-tensioned spring causes the pipe to have an initial,

nontrivial, state of equilibrium, as seen in the bifurcation diagram of Fig. 13(a). Similarly to the previous case, the fluid

being conveyed through the pipe eventually influences its initial state. Contrary to the previous case, the influence of the

fluid does not make the tip displacement move in the same direction as in Case 4; rather than moving towards the point

of attachment of the springs (and away from the x-axis centreline) the tip displacement in Case 5 moves away from the

springs, in the positive z-direction. While the displacement of the tip of the pipe goes in opposite directions, both

systems (Cases 4 and 5) globally experience the same phenomenon; amplification of the initial shape of the pipe with

increasing flow rate. The difference in the behaviour of the tip displacement can simply be attributed to a combination

of different system parameters.

Continuing with the bifurcation diagram for Case 5 (Fig. 13(a)), Hopf bifurcations develop simultaneously at u ¼ 8.5

in both planes, leading immediately to 3-D motion, similarly to what is observed in the system of Fig. 6. In this case, the

projected tip displacement traces a figure-of-eight limit cycle in the yz-plane, such as shown in Fig. 13(b) for u ¼ 8.55.

The periodic figure-of-eight motion is characterized by oscillations in the plane of initial divergence with symmetric

flutter in the perpendicular plane. The periodic motion persists with increasing amplitude, until chaotic oscillations

develop at u ¼ 8.75.
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3. The experimental investigation

The experimental study was conducted in order to collect some data for a cantilevered pipe conveying fluid with

intermediate spring supports, which could be compared with theoretical predictions.

The results collected are in the form of critical flow rates and bifurcation diagrams for Cases 1 and 2. A special

experiment was conducted later to verify the effect of the ring attachment connecting the springs to the pipe, which is

discussed qualitatively.
3.1. Experimental set-up

The pipe under consideration is specially cast from liquid silicone rubber and catalysed into an elastic solid for which

the physical and mechanical properties are listed in Table 1. The modal damping coefficients for the first four modes of

the dry pipe (without water in it) were found to be d1 ¼ 0.036, d2 ¼ 0.114, d3 ¼ 0.148, d4 ¼ 0.293. Then, by analytically

comparing the damping coefficients of both the dry pipe and the wet pipe (accounting for the mass of water in the pipe),

one can easily find that the two are related by a factor (1–b)1/2; thereby, the modal damping coefficients for the wet pipe

are d1
�
¼ 0.033, d2

�
¼ 0.105, d3

�
¼ 0.137, d4

�
¼ 0.271. To verify the accuracy of this correlation factor, the first modal

damping coefficient for the wet pipe was found experimentally (by filling the pipe with water and plugging it at both

ends). An error of approximately 1.1% was found.

The experiments were performed in a closed-circuit water circulation system supplying the pipe with

continuous, steady water-flow. This is the same system as that used in previous work (Semler and Paı̈doussis, 1996;

Paı̈doussis, 1998). It consists of the following components connected by rigid pipes: (i) a water reservoir; (ii) a

centrifugal pump; (iii) a variable speed motor; (iv) a water tank used as a pump-pulsation attenuator; (v) an

Omega FMG-700 magnetic flow-meter and an Omega DPF60 rate-meter; (vi) a slender flexible pipe; (vii) a collecting

tank.

A platform is fitted to the main system, as shown in Fig. 14, acting as a fixed point of attachment for an array of

springs giving additional support to the pipe at an intermediate position. A rigid base is clamped onto the main supply

pipe of the water-circulation system to which a vertically adjustable platform is attached. The platform slides up and

down the rigid base, thus determining the position Ls where the springs are connected to the pipe. The platform is fitted

with horizontal sliders to which the fixed ends of the springs are attached, allowing the variation of the initial stretch in

each spring, Ro, and their angle y. The springs are then connected to a thin plastic ring fitted around the pipe at the

height of the platform, so that the initial configuration of the array of springs sits in the horizontal plane of the

platform.
3.2. Experimental results

3.2.1. First experiment: Case 1 in Table 2

The spring parameters used in the theoretical analysis of Case 1 (see Tables 1 and 2) are the same as those of the first

experiment. In this experiment, it proved impossible to eliminate an initial, minute bow in the pipe. Although this bow

grew slightly in amplitude as the flow increased, the first important bifurcation was of the Hopf type. The pipe lost

stability by planar flutter at a flow rate of u ¼ 8.8 in the xy-plane [see Fig. 1(a)], resulting in oscillation about the line of

equilibrium. As the flow was further increased, there was a break in the symmetry of the oscillation at u ¼ 11.7, i.e., the

motion was no longer centred over the line of equilibrium, yet it still remained planar. The system eventually developed

unsteady 3-D dynamics.
3.2.2. Second experiment: Case 2 of Table 2

The second experiment corresponds to Case 2 of the theoretical study. A bifurcation diagram obtained

experimentally is given in Fig. 15. The physical behaviour of the system depicted therein is as follows. The first

instability was static, occurring again in the xy-plane at a flow rate of u ¼ 6.7. The amplitude of buckling grew as the

flow rate was increased. Eventually, small oscillations developed, superimposed on the divergence state, beginning at a

flow velocity of u ¼ 9.15. Soon after, while the pipe remained in its state of divergence in the xy-plane, at u ¼ 10.1, the

pipe lost stability via flutter in the zx-plane, i.e. perpendicular to the initial plane of buckling. This behaviour was

labelled ‘‘out-of-plane’’ flutter. The system then returned to in-plane flutter, i.e., in-plane with respect to the original

divergence, at u ¼ 11.54. The pipe ultimately proceeded to 3-D chaotic oscillations.
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Fig. 14. (a) Side view of the apparatus, showing the base platform that supports the vertically adjustable platform. 1, 2, 4: overlapping

z-shaped upper steel supports and central sleeve; 3: supply pipe; 5: boss supporting upper supporting structure; 6: vertical brass pipe

post; 7: elastomer pipe; 8: bearing for sliding rod on which one end of the spring is attached; 9: pipe sleeve; 10: vertically adjustable

platform; 11: bottom plate with a centred circular hole. (b) Plan-view of the adjustable platform, showing points of attachment of the

springs thereon; the pipe is mounted at the centre.

Fig. 15. Experimental bifurcation diagram for Case 2 showing average displacement (� ) and average amplitude (J).
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3.2.3. Experiments for Cases 4 and 5 of Table 2

While no quantitative data has been recorded for experiments with the parameters for Cases 4 and 5 of Table 2, some

interesting, qualitative observations have been made. When attaching two springs to the pipe, such as in Fig. 1(d) with a

given angle y, somewhere between 01 and 451, and with a slight amount of pre-tension (Ro4Lo), the pipe was off its

free-hanging centreline in the zx-plane before water even enters the pipe. As the flow rate increased, the pipe remained

in its initial, off-centre state. Eventually, the flow rate overcame the structural stiffness of the pipe and caused it to

buckle, still in the zx-plane. At even higher flow rate, the pipe lost stability and began to oscillate out-of-plane with the

tip displacement tracing a deformed, off-centre figure-of-eight path very similar to that seen in the theoretical results.

The Hopf bifurcation here occurred in the xy-plane while the motions in the zx-plane seemed to be uniquely a result of

geometrical constraint due to the divergence in that plane.

Similar observations were made for the system with only one spring attached: here the pipe buckled in the plane of

the spring and eventually began to flutter predominantly in the perpendicular plane.

These observations report a different behaviour in comparison to the results obtained with the array of four springs,

where a Hopf bifurcation occurs in the original plane of divergence before also occurring in the perpendicular plane.
3.2.4. Modified experiments to verify the effect of the ring attachment

As proposed in Part 1, it is thought that moments caused by the ring around the outside of the pipe to which the

springs are connected may not be negligible (see Fig. 16). In fact, a simple experiment where the springs are connected in

such a way as to eliminate moments in the y-direction, suggests that these moments play an influential role in

determining the plane of divergence. The experiment consists in rearranging the spring attachment as shown in Fig. 17.

By connecting the springs to the ring of the pipe on the z-axis origin, any possible moment in the y-direction is

eliminated. As hoped, the pipe now buckled in the zx-plane, rather than in the xy-plane (as in the experiment with the

original method of attachment of the springs); i.e., the pipe buckled in the plane of most resistance. The dynamics then

developed in similar fashion as for the experiments for Case 2 where oscillations about the state of divergence emerge,

quickly followed by out-of-plane flutter.
4. Comparison of theory and experiments

Comparisons of certain critical flow velocities between experiment and theory are presented in Tables 3 and 4 for

Cases 1 and 2, respectively. Unfortunately, most of the quantitative experimental results available for comparison with

the theoretical model are confined to the lower flow rates and hence to planar motions.

In the experiment for Case 1, the initial minute divergence is believed to be due to an imperfection in the set-up that

could not be eliminated. The first true instability is a Hopf bifurcation, for which the threshold flow velocity is

accurately predicted; in fact, the agreement is much better than that usually achieved, i.e., within �10% (Paı̈doussis,

1998). It is interesting to see how both experiment and theory predict a break in symmetry about the initial equilibrium

at almost the same flow velocity. However, the experimental observations do not record a return to symmetric flutter

such as predicted in the numerical results.

For Case 2, the difference between the experimental and theoretical flow rate at which the pipe buckles is larger, but

still within 10%. It is important to realize that the flow velocity at which a pipe buckles experimentally is very sensitive

to even the slightest imperfection.

The experiments for Case 2 show that the plane of buckling is the xy-plane, while the theoretical model predicts

divergence in the zx-plane. As discussed, theory predicts that the pipe buckles in the plane of most resistance. In the

experiments, however, the pipe buckled in what theory defines as the plane of least resistance.

In order to explain this paradox, some additional analysis needs to be done. A linear analysis of the system at hand

allows the decoupling of the equations of motion in the y- and z-direction. The difference between the two equations lies

entirely in the value of the linear spring stiffness terms, kyl and kzl:

Z0000 þ €Zþ 2u
ffiffiffi
b

p
_Z0 þ u2Z00 þ g Z0 � Z00 1� xð Þ½ � þ kylZd x� xsð Þ ¼ 0,

z0000 þ €zþ 2u
ffiffiffi
b

p
_z
0
þ u2z00 þ g z0 � z00 1� xð Þ

� �
þ kzlzd x� xsð Þ ¼ 0. ð1Þ

The direction in which the pipe will lose stability first is that for which the predicted ucr is the lowest. Fig. 18 shows

how ucr varies as a function of the linear spring stiffness k (kyl or kzl) for xs ¼ 0.75, b ¼ 0.145, and g ¼ 25.4. As

expected, for low values of k, a Hopf bifurcation is predicted to occur, and the higher the spring stiffness, the higher is

the critical flow velocity. It is also important to notice that ucr changes abruptly in the first portion of the curve. For



ARTICLE IN PRESS

x

Fspring, 3&4 Fspring, 1&2

Fspring, 1

Fspring, 2Fspring, 3

Fspring, 4

My = 0 

y(�) 

z(�) 

z(�) 

(a)

(b)

Fig. 17. Representation of the ring onto which the springs are connected to the pipe for the special experiment conducted to verify the

effect of the moments acting on the pipe caused by the springs: (a) top view, (b) side view.
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Fig. 16. Representation of the ring fixed to the pipe to which the springs are attached, while the pipe is buckled in the z(Z)-plane. The
shown forces come from each individual spring in the array of four springs and create the moment My shown in (b). (a) Top view of

ring, (b) side view of ring.
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stiffness values larger than kE100, stability is lost statically through a pitchfork bifurcation and the critical flow

velocity decreases asymptotically as the spring stiffness increases.

The linear dimensionless spring coefficients for Case 2 correspond to kyl ¼ 254.4 and kzl ¼ 676.4. Referring to Fig.

18, for these values of k the ucr for the pipe in the zx-plane is lower than in the xy-plane, leading to the assertion that the

first instability will favour the plane of most resistance (i.e., the zx-plane). Although the values of kyl and kzl are

significantly different, the respective critical velocities do not differ very much (ucr�y ¼ 7.50 versus ucr�z ¼ 7.47) due to

the asymptotic form in the curve. Since the critical velocities for each plane are so close for the given set of parameters,

the plane of divergence can become very sensitive to any kind of imperfection, such as small moments due to the way

the springs are connected to the pipe for example.
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Fig. 18. The critical flow rate, ucr, at which the first bifurcation occurs versus linear spring stiffness, k. For k ¼ 0–100, a bifurcation of

the Hopf type occurs; for k4100, pitchfork bifurcations are the first to take place, and ucr follows an asymptotic descent.

Table 3

Dimensionless flow velocity, u, for changes in stability of Case 1

Experimental Theoretical

Hopf bifurcation 8.8 8.8

Symmetry breaking 11.7 12.2

3-D motion Not available but observed 15.4

Table 4

Dimensionless flow velocity, u, for changes in stability of Case 2

Experimental Theoretical

Static pitchfork bifurcation 6.7 7.3

Hopf about divergence state 9.2 Does not occur

Out-of-plane Hopf; 3-D motion 10.1 8.3
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Appendix C of Part 1 proposes a linear term that would account for the moments caused by springs that are not

connected to the pipe at its centreline. A preliminary linear analysis shows that the moments will increase the flow

velocity at which the pitchfork bifurcation occurs in the zx-plane and decrease the same critical velocity in the xy-plane;

i.e., the effect is in the right direction. For the actual system parameters, however, the effect is not quantitatively strong

enough to switch the plane of divergence (from the plane of least resistance to the plane of most resistance). Only if

unrealistic, nonphysical parameters are used (e.g., taking the ring of attachment to be 10 times larger, 10 cm in

diameter) does the switching of the plane of divergence take place. At the time of writing, we cannot be certain as to the

reason for this important qualitative difference between theory and experiment. It could be that a more accurate 3-D

nonlinear modelling of the attachment is necessary, but there may even be some other effect that was not thought of.
5. Conclusion

Utilizing the theoretical model developed in Part 1 of this three-part study (Wadham-Gagnon et al., 2007), here the

3-D nonlinear dynamics of a vertical cantilevered pipe in the presence of additional intraspan spring support has been

explored. Choosing parameters corresponding to an experimental system with which comparison is later made, five
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particular systems (differing from one another in the location of the spring support, the number of springs involved and

their stiffness) have been investigated, referred to as Case 1, Case 2, et seq.

In Case 1, the system loses stability via a Hopf bifurcation, leading to planar flutter. With increasing flow, this is

followed by a symmetry breaking bifurcation, symmetry reconstitution, and quasiperiodic motions, all planar. The

quasiperiodic motions are followed by a radical change in the modal form and frequency of oscillation, from a

predominantly travelling-wave form to one characterized by a nodal point near the point of attachment of the springs.

At higher flows the oscillation becomes 3-D quasiperiodic, and later chaotic. In the experiments, the initial Hopf and

symmetry breaking bifurcations are in excellent agreement with theoretical predictions, as are the modal changes in the

oscillations. The onset of quasiperiodic and chaotic motions have also been observed, but some of the finer details of the

predicted behaviour have not been observed, and some of the experimental observations are not predicted.

In Case 2, the system loses stability by a pitchfork bifurcation leading to static divergence in the plane where the

springs offer most resistance. At higher flow, a secondary bifurcation in that plane and a bifurcation of the trivial

solution in the orthogonal plane lead to asymmetric oscillations about the buckled position, initially periodic, and at

higher flows quasiperiodic. This is succeeded by periodic figure-of-eight oscillations, and at higher flow by chaotic

motion. In the experiments, the qualitative dynamics is generally as predicted, though quantitatively less closely than in

Case 1. One aspect where theory and experiment disagree is the plane in which the initial divergence takes place: the

plane of most resistance (theory) and the plane of least resistance (experimental). This is investigated in Section 4 and it

is found that, for the values of stiffnesses involved in the two directions, the critical flow velocities predicted by the

uncoupled linear equations are quite close. It is suspected, therefore, that some detail in the experimental system (not

modelled or modelled insufficiently well) is responsible for switching the plane of the initial divergence. In ad hoc

experiments it was found that when the manner of attachment of the springs to the pipe was modified so as to eliminate

the small deformation-induced moment in the usual method of attachment, the plane of divergence switched to that

predicted by theory.

In Case 3, instead of a four-spring array as in the foregoing, two co-planar springs were used on either side of the

pipe. As the flow velocity is increased, divergence occurs in the plane of the springs, then in-plane flutter is superposed

(in the plane of divergence), followed by 3-D figure-of-eight quasiperiodic oscillations. An interesting quasi-intermittent

switching is found to occur from in-plane flutter to figure-of-eight oscillations, and an attractive butterfly cross-

sectional pattern of motion is observed.

In Cases 4 and 5, the system is initially deformed; two springs as in Fig. 1(d) or a single one draw the pipe off its

stretched-straight configuration. As flow is introduced, the system buckles in the plane of most resistance; while in the

first case towards the springs, and in the second away from the single spring, the behaviour is globally similar. Then the

system develops in-plane flutter in Case 4, followed by 3-D periodic motions; in Case 5, flutter arises simultaneously in

the two orthogonal directions, with figure-of-eight periodic motions, followed by chaotic ones.

No experiments are available for comparison with Cases 3–5.

In general terms, it is interesting to remark that, when one Hopf bifurcation occurs in the system, it usually leads to

simple periodic oscillations, even when it follows a pitchfork bifurcation. When dynamic bifurcations occur in both

planes, theory predicts a much richer dynamical behaviour, ranging from simple periodic cross-sectionally ellipsoidal

oscillations and figure-of-eight oscillations to more elaborate 3-D quasiperiodic oscillations.

From these observations, it is quite clear that, at best, the present paper serves to illustrate the very rich dynamical

behaviour that this system can develop. Much more remains to be discovered, both by more extensive simulations and a

more extensive experimental programme. Specifically, experiments with a different mounting of the springs on the pipe

and different location of the springs should be conducted, pipes with different (higher) b should be tested, and

corresponding simulations conducted.
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